

Chelex 100 sodium form

Analytical grade resin

Product Number: C27971

Appearance: White moist powder (swollen beads)

Capacity of Sodium Form: 0.7 meq/ml

Storage Temperature: Room Temperature

Structure

A styrene-divinylbenzene copolymer containing paired iminodiacetate ions which act as chelating groups in binding polyvalent metal ions. It is considered a weakly acidic resin.

Usage

Product is autoclavable in sodium form. It has a maximum operating temperature of 75°C and is not soluble in water. Binding is a function of pH. Absorption is very low below pH 2 and increases sharply from pH 2 to 4. It reaches a maximum above pH 4. Optimum binding for many divalent cations is at pH 6.5 or higher. Its selectivity for divalent over monovalent ions is approximately 5000 to 1, and it has a very strong attraction for transition metals, even in highly concentrated salt solutions. Actual selectivity values for any particular system depend on the pH, ionic strength, and presence of other complex-forming species. Metals can be removed using either the batch or column technique, although the column technique is more efficient. With 50-100 mesh, rapid flow rates are obtained and large volumes of solution can be processed in very little time. Resin can be regenerated by washing in the following sequence: 2 bed volumes of 1 N HCl, 5 bed volumes water, 2 bed volumes of 1 N NaOH, 5 bed volumes water.

Applications

Removal of metals from enzyme solutions²

Removal of metals from cell suspensions³

Calcium removal from dinucleotides⁴

Calcium removal from calmodulin and buffer⁵

Removal of calcium from erythrocyte lysates⁶

Reducing calcium and magnesium concentrations in tissue culture medium Effect of pH and ionic strength on chelating properties⁸

Stability of metal complexes⁹

Trace metal studies¹

As a medium for extraction of DNA from forensic-type samples¹⁰

Removal of metal ion from guinea pig complement¹¹

References

- 1. Figura, P. and McDuffie, B., Anal. Chem., vol. 49, 1950 (1977).
- 2. Dunn, M.F., et al., Biochemistry, vol. 19, 718 (1980).

- 3. Borson, W.F., et al., Biochemistry, vol. 14, 2275 (1975).
- 4. Reinhardt, C.G. and Krugh, T.R., Biochemistry, vol. 17, 4845 (1978).
- 5. Crouch, T.H. and Klee, C.B., Biochemistry, vol. 19, 3692 (1980).
- 6. Raymond, F.A., and Weinshilboum, R.M., Clin. Chem. Acta, vol. 58, 185 (1975).
- 7. Brennan, J.K., et al, In Vitro, vol. 11, 354 (1975).
- 8. Luttrell, G.H., More, C. and Kenner, C.T., Anal. Chem., vol. 43, 1370 (1971).
- 9. Chaberek, S. and Martell, A.E., J. Am. Chem. Soc., vol. 74, 5052 (1952).
- 10. Walsh, P.S., Metzger, D.A. and Higuchi, R., BioTechniques, vol. 10, 506 (1991).
- 11. Amiraian, K., McKinney, J.A. and Duchna, I., Immunology, vol. 26, 1135 (1974).

Precautions and Disclaimer

For Laboratory Use Only. Not for drug, household or other uses.